Inoculation by Fine-Tuning google
Several datasets have recently been constructed to expose brittleness in models trained on existing benchmarks. While model performance on these challenge datasets is significantly lower compared to the original benchmark, it is unclear what particular weaknesses they reveal. For example, a challenge dataset may be difficult because it targets phenomena that current models cannot capture, or because it simply exploits blind spots in a model’s specific training set. We introduce inoculation by fine-tuning, a new analysis method for studying challenge datasets by exposing models (the metaphorical patient) to a small amount of data from the challenge dataset (a metaphorical pathogen) and assessing how well they can adapt. We apply our method to analyze the NLI ‘stress tests’ (Naik et al., 2018) and the Adversarial SQuAD dataset (Jia and Liang, 2017). We show that after slight exposure, some of these datasets are no longer challenging, while others remain difficult. Our results indicate that failures on challenge datasets may lead to very different conclusions about models, training datasets, and the challenge datasets themselves. …

Transformation Invariant Graph-Based Network (TIGraNet) google
Learning transformation invariant representations of visual data is an important problem in computer vision. Deep convolutional networks have demonstrated remarkable results for image and video classification tasks. However, they have achieved only limited success in the classification of images that undergo geometric transformations. In this work we present a novel Transformation Invariant Graph-based Network (TIGraNet), which learns graph-based features that are inherently invariant to isometric transformations such as rotation and translation of input images. In particular, images are represented as signals on graphs, which permits to replace classical convolution and pooling layers in deep networks with graph spectral convolution and dynamic graph pooling layers that together contribute to invariance to isometric transformation. Our experiments show high performance on rotated and translated images from the test set compared to classical architectures that are very sensitive to transformations in the data. The inherent invariance properties of our framework provide key advantages, such as increased resiliency to data variability and sustained performance with limited training sets. Our code is available online. …

Video Transformer Network (VTN) google
In this work we present a new efficient approach to Human Action Recognition called Video Transformer Network (VTN). It leverages the latest advances in Computer Vision and Natural Language Processing and applies them to video understanding. The proposed method allows us to create lightweight CNN models that achieve high accuracy and real-time speed using just an RGB mono camera and general purpose CPU. Furthermore, we explain how to improve accuracy by distilling from multiple models with different modalities into a single model. We conduct a comparison with state-of-the-art methods and show that our approach performs on par with most of them on famous Action Recognition datasets. We benchmark the inference time of the models using the modern inference framework and argue that our approach compares favorably with other methods in terms of speed/accuracy trade-off, running at 56 FPS on CPU. The models and the training code are available. …

Weakly-supervised Temporal Activity Localization (W-TALC) google
Most activity localization methods in the literature suffer from the burden of frame-wise annotation requirement. Learning from weak labels may be a potential solution towards reducing such manual labeling effort. Recent years have witnessed a substantial influx of tagged videos on the Internet, which can serve as a rich source of weakly-supervised training data. Specifically, the correlations between videos with similar tags can be utilized to temporally localize the activities. Towards this goal, we present W-TALC, a Weakly-supervised Temporal Activity Localization and Classification framework using only video-level labels. The proposed network can be divided into two sub-networks, namely the Two-Stream based feature extractor network and a weakly-supervised module, which we learn by optimizing two complimentary loss functions. Qualitative and quantitative results on two challenging datasets – Thumos14 and ActivityNet1.2, demonstrate that the proposed method is able to detect activities at a fine granularity and achieve better performance than current state-of-the-art methods. …



Source link

Shares:
Leave a Reply

Your email address will not be published. Required fields are marked *